Almost four stories high, framed in steel beams and tangled in pipes, conduits, cables, and coils, the Joint European Torus (JET) claims to be the largest fusion power experiment in the world. Located near Oxford, England, JET is a monument to big science, its donut-shaped containment vessel dwarfing maintenance workers who enter it in protective suits. Here in this gleaming nuclear cauldron, deuterium gas is energized with 7 million amperes and heated to 300 million degrees Celsius - more than 10 times hotter than the center of the sun. Under these extreme conditions atomic nuclei collide and fuse, liberating energy that could provide virtually limitless power.
Maybe.
High-tension lines run directly to the installation, but they don't take electricity out - they bring it in. For a few magic seconds in 1997, JET managed to return 60 percent of the energy it consumed, but that's the best it's ever done, and is typical of fusion experiments worldwide. The US Department of Energy has predicted that we'll have to wait another five decades, minimum, before fusion power becomes practical. Meanwhile, the United States continues to depend on fossil fuels for 85 percent of its energy.
Many miles away, in the basement of a fine new home in the hills overlooking Santa Fe, New Mexico, a retired scientist named Edmund Storms has built a different kind of fusion reactor. It consists of laboratory glassware, off-the-shelf chemical supplies, two aging Macintosh computers for data acquisition, and an insulated wooden box the size of a kitchen cabinet. While JET's 15 European sponsor-nations have paid about US$1 billion for their hardware, and the US government has spent $14.7 billion on fusion research since 1951 (all figures in 1997 dollars), Storms's apparatus and ancillary gear have cost less than $50,000. Moreover, he claims that his equipment works, generating surplus heat for days at a time.