Does this mean there are hundreds or thousands of unsafe tall buildings with long span supports that must be retrofitted in some way? How would you retrofit a building to prevent this problem?
While the partial or total collapse of a tall building due to fires is a rare event, NIST strongly urges building owners, operators, and designers to evaluate buildings to ensure the adequate fire performance of structural systems. Of particular concern are the effects of thermal expansion in buildings with one or more of the following characteristics: long-span floor systems, connections that cannot accommodate thermal effects, floor framing that induces asymmetric forces on girders, and composite floor systems, whose shear studs could fail due to differential thermal expansion (i.e., heat-induced expansion of material at different rates). Engineers should be able to design cost-effective fixes to address any areas of concern identified by such evaluations.
Several existing, emerging, or even anticipated capabilities could have helped prevent the collapse of WTC 7. The degree to which these capabilities improve performance remains to be evaluated. Possible options for developing cost-effective fixes include:
More robust connections and framing systems to better resist effects of thermal expansion on the structural system.
Structural systems expressly designed to prevent progressive collapse. Current model building codes do not require that buildings be designed to resist progressive collapse.
Better thermal insulation (i.e., reduced conductivity and/or increased thickness) to limit heating of structural steel and minimize both thermal expansion and weakening effects. Insulation has been used to protect steel strength, but it could be used to maintain a lower temperature in the steel framing to limit thermal expansion.
Improved compartmentation in tenant areas to limit the spread of fires.
Thermally resistant window assemblies to limit breakage, reduce air supply and retard fire growth.