Here's what Feynman had to say about the question of explanation in physics (
The Feynman Lectures on Physics, vol. 2, sec. 1-5). He was talking about electromagnetism, not gravity, but the general idea is the same.
1-5 What are the fields?
We now make a few remarks on our way of looking at this subject. You may be saying: "All this business of fluxes and circulations is pretty abstract. There are electric fields at every point in space; then there are these 'laws.' But what is actually happening? Why can't you explain it, for instance, by whatever it is that goes between the charges." Well, it depends on your prejudices. Many physicists used to say that direct action with nothing in between was inconceivable. (How could they find an idea inconceivable when it had already been conceived?) They would say: "Look, the only forces we know are the direct action of one piece of matter on another. It is impossible that there can be a force with nothing to transmit it." But what really happens when we study the "direct action" of one piece of matter right against another? We discover that it is not one piece right against the other; they are slightly separated, and there are electrical forces acting on a tiny scale. Thus we find that we are going to explain so-called direct-contact action in terms of the picture for electrical forces. It is certainly not sensible to try to insist that an electrical force has to look like the old, familiar, muscular push or pull, when it will turn out that the muscular pushes and pulls are going to be interpreted as electrical forces! The only sensible question is what is the most convenient way to look at electrical effects. Some people prefer to represent them as the interaction at a distance of charges, and to use a complicated law. Other love the field lines. They draw field lines all the time, and feel that writing E's and B's is too abstract. [...]
The best way is to use the abstract field idea. That it is abstract is unfortunate, but necessary. The attempts to try to represent the electric field as the motion of some kind of gear wheels, or in terms of lines, or of stresses in some kind of material have used up more effort of physicists than it would have taken simply to get the right answers about electrodynamics. It is interesting that the correct equations for the behavior of light in crystals were worked out by McCullough in 1843. But people said to him: "Yes, but there is no real material whose mechanical properties could possibly satisfy those equations, and since light is an oscillation that must vibrate in something, we cannot believe this abstract equation business." If people had been more open-minded, they might have believed in the right equations for the behavior of light a lot earlier than they did.
So, Southwind17, when you ask for an explanation of gravity,
in terms of what do you want it explained? And why doesn't
that, whatever it is, need its own explanation?