In every generation better-adapted individuals will bee more likely to survive and reproduce. This is only a tendency, however, not a deterministic rule. A snail living in an English hedgerow is less likely to be eaten of its shell is striped rather than plain.But it is not very likely to survive in any case; it may be eaten by a shrew, or die of heatstroke or starvation; it may even be eaten by a bird after all. Selection is a process of sampling. The variation of characters among individuals ensures that the sample that reproduces is a biased sample of the population as a whole, but its composition cannot be precisely specified in advance. But there is nobody responsible for selecting snail at the bottom of hedgerow, and no individuals, no matter how well-endowed has any guarantee of success, only a greater or lesser chance. Richard Lewontin once prefaced a lecture on this topic with a quote from Ecclesiastes: the race is not alway to the swift, nor the battle to the strong; but time and chance happen to both.
The nature of evolution as sampling implies that evolution is a stochastic process that is subject to sampling error. The composition of a population at any point in time will be determined by three factors. One is historical, the composition of the generation from which it descends. The second is selection, which tends to increase some kinds of individual and decrease others. The third is chance. The actual composition of the population will inevitably differ from what we expected based on descent and selection, because the life of each individual is a historically unique succession of events who eventual outcome is influenced by a multitude of factors. The next generation is formed in a stochastic, or probabilistic, fashion from the success and failure of many such lives. We may be able to predict its average properties with some assurance, but its composition will fluctuate to a greater or lesser extent in ways we cannot predict or account for.