"This new type of El Niño is more predictable," said Webster. "We're not sure why, but this could mean that we get greater warning of hurricanes, probably by a number of months."
As to why the form of El Niño is changing to El Niño Modoki, that's not entirely clear yet, said Webster.
"This could be part of a natural oscillation of El Niño," he said. "Or it could be El Niño's response to a warming atmosphere. There are hints that the trade winds of the Pacific have become weaker with time and this may lead to the warming occurring further to the west. We need more data before we know for sure."
In the study, Webster, along with Earth and Atmospheric Sciences Chair Judy Curry and research scientist Hye-Mi Kim used satellite data along with historical tropical storm records and climate models.
The research team is currently looking at La Niña, the cooling of the surface waters in the Eastern and Central Pacific.
"In the past, La Nina has been associated with a greater than average number of North Atlantic hurricanes and La Nina seems to be changing its structure as well," said Webster. "We're vitally interested in understanding why El Niño-La Niña has changed. To determine this we need to run a series of numerical experiments with climate models."