Photobiomodulation by light in the red to near infrared range (630–1000 nm) using low energy lasers or light-emitting diode
(LED) arrays has been shown to accelerate wound healing, improve recovery from ischemic injury in the heart and attenuate
degeneration in the injured optic nerve. Recent evidence indicates that the therapeutic effects of red to near infrared light result,
in part, from intracellular signaling mechanisms triggered by the interaction of NIR light with the mitochondrial photoacceptor
molecule cytochrome c oxidase. We have demonstrated that NIR-LED photo-irradiation increases the production of
cytochrome oxidase in cultured primary neurons and reverses the reduction of cytochrome oxidase activity produced by
metabolic inhibitors. We have also shown that NIR-LED treatment prevents the development of oral mucositis in pediatric bone
marrow transplant patients. Photobiomodulation improves wound healing in genetically diabetic mice by upregulating genes
important in the promotion of wound healing. More recent studies have provided evidence for the therapeutic benefit of NIRLED
treatment in the survival and functional recovery of the retina and optic nerve in vivo after acute injury by the
mitochondrial toxin, formic acid generated in the course of methanol intoxication. Gene discovery studies conducted using
microarray technology documented a significant upregulation of gene expression in pathways involved in mitochondrial energy
production and antioxidant cellular protection. These findings provide a link between the actions of red to near infrared light on
mitochondrial oxidative metabolism in vitro and cell injury in vivo. Based on these findings and the strong evidence that mitochondrial dysfunction is involved in the pathogenesis of numerous diseases processes, we propose that NIR-LED
photobiomodulation represents an innovative and non-invasive therapeutic approach for the treatment of tissue injury and
disease processes in which mitochondrial dysfunction is postulated to play a role including diabetic retinopathy, age-related
macular degeneration, Leber’s hereditary optic neuropathy and Parkinson’s disease.
Abbreviations: NIR, near infrared; LED, light-emitting diode; ERG, electroretinogram; LRRI, log relative retinal illumination.
* Corresponding author. Tel.: C1C414-229-5405; fax: C1C414-229-2619.
E-mail address:
jeells@uwm.edu (J.T. Eells).
1567-7249/$ - see front matter q 2004 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
doi:10.1016/j.mito.2004.07.033