Proof of Immortality, VI

Status
Not open for further replies.
One of my claims at this point is something to the effect that my overall mathematical concept is still correct -- it's just that I'm weak on the details.

This claim has been thoroughly examined, found to be fatally flawed, and comprehensively rejected. You have no grounds to continue making it.

Dave
 
jt,
- One of my claims at this point is something to the effect that my overall mathematical concept is still correct -- it's just that I'm weak on the details.
- I now accept that the simple formula I tried to use above --
P(I|E)=P(E|I)*P(I)/P(E) does not apply, but I still think that the more complicated formula -- P(I|E)= P(E|I)P(I)/P(E|I)P(I)+P(E|~I)P(~I) -- does and P(E|I) can be greater than P(E|~I).
- I assume that the simple formula I used previously is not appropriate for comparing hypotheses.

Jabba, what did the experts in statistics say when you consulted them? I think it would assist this open and honest debate if you were able to remind us.
 
jt,
- One of my claims at this point is something to the effect that my overall mathematical concept is still correct -- it's just that I'm weak on the details.
- I now accept that the simple formula I tried to use above --
P(I|E)=P(E|I)*P(I)/P(E) does not apply, but I still think that the more complicated formula -- P(I|E)= P(E|I)P(I)/P(E|I)P(I)+P(E|~I)P(~I) -- does and P(E|I) can be greater than P(E|~I).
- I assume that the simple formula I used previously is not appropriate for comparing hypotheses.

The two formulas are equivalent. If the numerator exceeds the denominator in one of them, it will in the other as well.
 
jt,
- One of my claims at this point is something to tIhe effect that my overall mathematical concept is still correct -- it's just that 'm weak on the details.
- I now accept that the simple formula I tried to use above --
P(I|E)=P(E|I)*P(I)/P(E) does not apply, but I still think that the more complicated formula -- P(I|E)= P(E|I)P(I)/P(E|I)P(I)+P(E|~I)P(~I) -- does and P(E|I) can be greater than P(E|~I).
- I assume that the simple formula I used previously is not appropriate for comparing hypotheses.

The two formulas are equivalent. If the numerator exceeds the denominator in one of them, it will in the other as well
jt,
- If I understand what you're saying, I still think you're wrong -- though, I made another mistake in my latest formula. The denominator needs another parenthesis -- (P(E|I)P(I)+P(E|~I)P(~I)) -- but then, it should equal or exceed the numerator because the denominator in this formula includes an extra element -- P(E|I)P(I).
 
jt,
- If I understand what you're saying, I still think you're wrong -- though, I made another mistake in my latest formula. The denominator needs another parenthesis -- (P(E|I)P(I)+P(E|~I)P(~I)) -- but then, it should equal or exceed the numerator because the denominator in this formula includes an extra element -- P(E|I)P(I).

He knew what you meant, and your numerator includes no extra terms.

P(E|I)P(I)+P(E|~I)P(~I) = P(E), always.

So P(E|I)*P(I)/P(E) and P(E|I)*P(I)/(P(E|I)P(I)+P(E|~I)P(~I)) are identical.
 
jt,
- If I understand what you're saying, I still think you're wrong

That's because you not only do you not understand the equations you're typing, but you're filling in the equations with totally made-up numbers. And your understanding of the probability is so poor that you can't even recognize that the numbers you're making up are mathematically inconsistent.

Anyone whose gotten through the first week of a first class in probability can see that the numerator in Bayes' Theorem cannot exceed the denominator—no matter how you write it. Yet you wrote
P(I|E)=P(E|I)*P(I)/P(E)=1*.01/.00000000000…1

To reiterate, the equation P(I|E)=P(E|I)*P(I)/P(E) is formally correct. The fact that you could fill it in with numbers that actually contradict the equation gives away exactly how profoundly ignorant you are.

You have revealed that you have absolutely no clue what you're doing. Stop trying to fool yourself, much less us. Stick with your ignorant creationist friends. They're your audience. We've got your number. Go away.
 
Last edited:
I have previously commented that if Jabba's argument leads anywhere it is to ID rather than immortality.


It would have to be.

Jabba starts out by saying that his particular existence is a remarkably low-probability event. He's one of: all possible people + alive at this time. However, the set of "all possible people" is infinitely large. "Alive at this time" doesn't add anything.

So, if he were mortal or immortal, his existence remains equally unlikely.

The only argument then is that he necessarily had to exist because God chose him and placed him on earth. And that, while stupid, at least has nothing to do poor Mr. Bayes.
 
Status
Not open for further replies.

Back
Top Bottom