Looking into the future, it is not fanciful to imagine a time when viruses, both bad and good, have become so ubiquitous that we could speak of an ecological community of viruses and legitimate programs coexisting in the silicosphere. At present, software is advertised as, say, ``Compatible with System 7.'' In the future, products may be advertised as ``Compatible with all viruses registered in the 1998 World Virus Census; immune to all listed virulent viruses; takes full advantage of the facilities offered by the following benign viruses if present...'' Word-processing software, say, may hand over particular functions, such as word-counting and string-searches, to friendly viruses burrowing autonomously through the text.
Looking even further into the future, whole integrated software systems might grow, not by design, but by something like the growth of an ecological community such as a tropical rain-forest. Gangs of mutually compatible viruses might grow up, in the same way as genomes can be regarded as gangs of mutually compatible genes (Dawkins, 1982). Indeed, I have even suggested that our genomes should be regarded as gigantic colonies of viruses (Dawkins, 1976). Genes cooperate with one another in genomes because natural selection has favored those genes that prosper in the presence of the other genes that happen to be common in the gene pool. Different gene pools may evolve towards different combinations of mutually compatible genes. I envisage a time when, in the same kind of way, computer viruses may evolve towards compatibility with other viruses, to form communities or gangs. But then again, perhaps not! At any rate, I find the speculation more alarming than exciting.
At present, computer viruses don't strictly evolve. They are invented by human programmers, and if they evolve they do so in the same weak sense as cars or aeroplanes evolve. Designers derive this year's car as a slight modification of last year's car, and then may, more or less consciously, continue a trend of the last few years --- further flattening of the radiator grill or whatever it may be. Computer virus designers dream up ever more devious tricks for outwitting the programmers of anti-virus software. But computer viruses don't --- so far --- mutate and evolve by true natural selection. They may do so in the future. Whether they evolve by natural selection, or whether their evolution is steered by human designers, may not make much difference to their eventual performance. By either kind of evolution, we expect them to become better at concealment, and we expect them to become subtly compatible with other viruses that are at the same time prospering in the computer community.
DNA viruses and computer viruses spread for the same reason: an environment exists in which there is machinery well set up to duplicate and spread them around and to obey the instructions that the viruses embody. These two environments are, respectively, the environment of cellular physiology and the environment provided by a large community of computers and data-handling machinery.