I like this approach of thinking of it as as being bimodal. And so I think we'll start there and then we'll sort of backtrack. So when we talk about bimodality I'm not sure if that's a concept that comes naturally to a lot of people. I don't know if you guys remember way back in like your early math classes when you would learn measures of central tendency. But you learned about the mean, median and the mode, right? The average, the median and these are all different ways to say that's sort of the central point of a population or of a sample. So we often talk about the average, that's if you add everybody up and then divide by the number of everybody's. And then we say on average you know, on average people have two arms but not everybody has two arms. On average people you know have, I don't know, brown eyes. But of course not everybody has brown eyes. But on average we could say that and then you have the median, which is sort of the point in a row of frequencies, that falls in the middle, and that's not always going to give you the same answer, as the mean. And then you have the mode. And the mode is let's say we're looking at a certain feature, eye color, and we want to say, you know we take a group of of kids in a class and then we say, what color are your eyes, and for every blue eyed person we put a tick mark in that column, for every brown eyed person we put a tick mark, for every green eyed person we put a tick mark. And then we'll see you know what is the mode, it's the most frequent expression. So when we talk about something being bimodal, it literally looks like a normal curve, except it has two bumps instead of one. Can everybody envision that?