Let us demonstrate Cantor's construction method, by using |P(S)| proper subsets of P(S) members, where each P(S) proper subset has |S| different P(S) members that are mapped with all S members.
In this demonstration we are using the all members of S={a,b,c} and |P(S)| proper subsets of different members of P(S)={{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}, where each used P(S) proper subset has |S| different P(S) members, as follows:
.
.
.
|
|
|-----------------------
|a ↔ {a} |
|b ↔ {b} | Provides {}
|c ↔ {c} |
|-----------------------
|
|
|-----------------------
|a ↔ { } |
|b ↔ {b} | Provides {a}
|c ↔ {c} |
|-----------------------
|
|
|-----------------------
|a ↔ {a} |
|b ↔ { } | Provides {b}
|c ↔ {c} |
|-----------------------
|
|
|-----------------------
|a ↔ {a} |
|b ↔ {b} | Provides {c}
|c ↔ { } |
|-----------------------
|
|
|-----------------------
|a ↔ { } |
|b ↔ {c} | Provides {a,b}
|c ↔ {a,c} |
|-----------------------
|
|
|-----------------------
|a ↔ { } |
|b ↔ {b} | Provides {a,c}
|c ↔ {a,b} |
|-----------------------
|
|
|-----------------------
|a ↔ {a} |
|b ↔ {c} | Provides {b,c}
|c ↔ {a,b} |
|-----------------------
|
|
|-----------------------
|a ↔ { } |
|b ↔ {a} | Provides {a,b,c}
|c ↔ {b} |
|-----------------------
|
|
.
.
.
As can be seen, we have constructed the all P(S) members without exceptional, by using Cantor's construction method, and it does not matter if |P(S)| and |S| are finite or infinite.
In the case where |P(S)| and |S| are infinite, Dedekind's infinite holds (where S is a proper subset of P(S)).